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Abstract. In this paper, the circular symmetric two-dimensional sine-Gordon equation 
omitting the origin is investigated by using the numerical integral method. There exists a 
ring-shaped quasisoliton solution and this ring-shaped wave firstly travels outward and 
then at certain positions it returns. A simple analytical treatment of return time is made 
and is in agreement with the numerical one. Finally, an interpretation of the return effect 
is also presented. 

In many fields of physics, one-dimensional solitary wave solutions have been investi- 
gated by many people both theoretically and experimentally [ 13. A explicit analytical 
lumped soliton solution of the two-dimensional Kadomtsev- Petviashvili equation has 
been found by Manakov et a1 [2] and Ablowitz and Satsuma [3]. Spherically and 
cylindrically symmetric solitary wave solutions of modified Korteweg-de Vries 
equations were derived by Maxon and Viecelli [4]. Their numerical and analytical 
investigations show that these waves differ qualitatively from the one-dimensional 
solution. In contrast to the one-dimensional case, where the wave form is retained, 
these solutions increase in amplitude and decrease in width as they shrink. The 
existence of two-dimensional solitary waves was experimentally verified by 
Herschkowitz and Romesser [ 5 ] .  

Christiansen and Olsen have numerically investigated symmetric solitary wave 
solutions of the sine-Gordon equation in two and three spatial dimensions [ 6 ] .  They 
found that there exists a ring-shaped quasisoliton solution. The ring-shaped wave 
firstly travels outward and then at certain position it returns. This motion of the ring 
wave is called the return effect. But for the geometric dimension they included the 
origin. In our opinion the origin seems to cause some trouble [ 6 ]  (see equation (1’)). 
So in the present paper we want to discuss the quasisoliton solution of an annular 
sine-Gordon equation with circular symmetry. On the other hand, in physics, the 
circular symmetric two-dimensional Josephson junction is actually described by this 
circular symmetric two-dimensional sine-Gordon equation [7]. In [ 7 ] ,  we have dis- 
cussed the static solution of this equation. As the first step for discussing the dynamical 
behaviour further, we discuss the quasisoliton solution here. 

$ Permanent address: Physics Department, The Center of Nonlinear Dynamical System, Nanjing University, 
Nanjing, People’s Republic of China. 
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For the annular Josephson junction with the dissipative term omitted, we have the 
circular symmetric sine-Gordon equation: 

(1) 

where @( r, t )  is the phase of the superconducting order parameter, the internal radius 
is rI and the external radius is r E .  In all of our computations, rI is equal to 20. We 
compute this equation by using finite-diff erence methods for spatial dimension with 
the boundary conditions 

@ ( r = r , ,  t = O ) = O  ( 2 )  
@ r ( r = r I , t = O ) = O  (3) 

Q r r  + mr/ r - a,, = sin @ 

and assuming the ring-shaped soliton solution at time t = 0 is 

Here ro is the initial position of the ring wave and U is the outward initial expansion 
velocity. The results for the radius derivative of @,ar,  for ro=30 and U =0.8 are 
shown in figure 1. It is clear that for t = t,,, the ring wave attains its maximum radius 
I,,,; then the ring wave returns. The return effect occurs and the ring wave shrinks 
forward its internal boundary r , .  

After the reflection the expanding ring wave splits into a ring wave with smaller 
amplitude and a ring wave with larger amplitude. The smaller wave radiates into 
infinity while the larger one experiences a return effect. The resulting shrinking wave 
is then reflected at r = r ,  again. The radiated phenomenon and the return effect 
described above are repeated several times. 

4.00 I 

r 

Figure 1. Evolution with time of the numerical solution of the initial-value problem of 
(1)-(5). The initial position of the ring wave is ro = 30 and the initial outward expansion 
velocity is U = 0.8. The vertical axis is the radius derivative of 0, 0,. The peaks are for: 
(1)  t = 0, (2) t = 16, (3) t = 48, (4) t = 68, (5) t = 96. They denote the expanding ring wave 
before returning (1,2) ;  just at the returning point ( 3 )  and the shrinking ring wave after 
returning (4, 5). 
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An analytical approximation for the ring wave returning are derived in the following. 
From figure 1 we can see that the shape of the ring waves are not changed drastically 
as time passes [6]. So we introduced the assumption 

r - R ( t )  a(r, t )  = 4 tan-’ exp ( 
Here the function R ( t )  describes the position of the maximum of Q r .  

From (1)-(3), we get 
1 + R’( t ) *  

- - R“( t )  
1 
R 1 - RI( t)’ 
_ -  

R (  t = 0) = ro 

R’( t = 0) = U. 

A first integral of the above equations is 
_ -  R - 1 - R‘( t ) ’  exp( R‘( t i  - u 2 )  
ro I - U ’  

(7)  

If R reaches the maximum, R = r m a x ,  and then R‘ is equal to zero at the same time; 
rmax is thus 

rmax = ro - 1 exp($). 
1 - u 2  

From (10) and ( l l ) ,  we can obtain t,,, as 
2”*r0 

( 1 - u 2 )  exp(u2/2) 
[ I  - ( I  - u2j  exp(u2/2)]’”. tr,, = 

We show the theoretical and numerical results in figure 2. We can see that there 
is very good agreement for small U. 

T 

U 

Figure 2. Return time plotted against initial velocity of ring wave. The curve is the result 
of (12) and the points are the results of numerical calculations for ring waves with an 
initial position ro = 30. 
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In figure 3(a, b ) ,  we show the interaction between two ring waves: 

Here the upper signs result in a quasisoliton-quasisoliton collision while the lower 
ones result in a quasisoliton-antiquasisoliton collision. In figure 3, it is seen that the 
two waves collide. 

The return effect may be interpreted as follows. Since the width and the velocity 
of the ring wave can be derived from (10) 

From (15) and (16), we can see that as the wave is travelling outward, the velocity, 
R‘ ,  of the wave slows down and the width, W, of the wave increases. As the wave is 
travelling to r = rmax the velocity slows down to zero and the width of the ring wave 
is increased to its maximum. Because the ring wave is unstable at r m a X ,  it must return. 
Since there is a boundary at r = r , ,  the wave must move backward and forward between 
rl  and r,,,. 

In conclusion we have numerically studied the circular symmetric two-dimensional 
sine-Gordon equation. In contrast to the previous work, we omitted the origin, the 
natural singular point, of (1) in our case. Our results show that there exists a ring-shaped 
quasisoliton solution and this ring-shaped wave firstly travels outward and then at 
certain position it returns. There also exists a collision between the quasisolition and 
soliton. From the assumption of no drastic change of the ring wave with time, a simple 
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Figure 3. ( a )  Evolution with time of the numerical solution of the initial-value problem 
of (1143)  and (13) and (14) with upper signs in (13) and (14). The initial position of one 
ring wave is r ,  = 30 and that of another is r2 = 40, and the correspondent initial velocities 
are U ,  = 0.9 (outward) and u2 = 0.5 (inward). The vertical axis is the radius derivative of 
@, m r .  The peaks are marked: (1) t = 0, (2 )  t = 2, (3) r = 4, (4)  f = 7, denoting the ring 
waves before collision ( 1 , 2 , 3 )  and just at collision (4) .  ( b )  Continuation of the solution 
in ( U )  for ( 1 )  1 = 8, (2) I = 12, (3) f = 16, (4) t = 24, denoting the ring waves after collision. 
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analytical treatment of return time is made and is in agreement with the numerical 
one. An interpretation of the return effect is also presented. However, we want to 
point out that the rmax becomes smaller and smaller with a slow speed since there is 
little energy lost as the wave is moving (some small-amplitude ring waves that result 
from the reflection of the ring wave at r,  radiate into infinity). 

In addition, for the circular symmetric two-dimensional sine-Gordon equation, the 
more interesting problem is to study the solutions of the equation within an annular 
region. This is the dynamical problem of the annular Josephson junction, and it seems 
that there are no stable ring-shaped quasisoliton solutions [8], which might well deserve 
further study. 
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